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Abstract 
Placement of distributed generation (DG) sources in a distribution network has the potential to provide 
improved system performance such as reduced losses and improved voltage profile, while also providing 
nontechnical benefits like reduced emissions. The technical impact of DG sources can be positively or adversely 
affected by the location and sizing of the DG sources. Therefore choosing the location and size of DG sources is 
of utmost importance. This paper considers the placing and sizing of photovoltaic (PV) systems, which are DG 
sources providing active power, using a hybrid of Loss Sensitivity Factors (LSF) and Teaching Learning Based 
Optimization (TLBO) algorithm, by considering the minimization of losses as the objective function. The 
performance analysis of the proposed method in terms of real power loss and static voltage stability is carried 
out with standard IEEE 33-bus and standard IEEE 69-bus test systems. The proposed approach has given better 
results than many existing techniques and shows its adaptability to real time applications. 
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Introduction 
Distributed Generation (DG) sources are small generation units situated at or near load sites in the distribution 
network. The increasing penetration of these sources can be attributed to the steadily increasing trend in energy 
demands, fast depletion of conventional fuel resources and the push for clean energy sources. Being situated 
near to the consumer ends, DG sources provide technical benefits such as improved voltage profile, improved 
voltage stability, reduced distribution losses and reduced line congestion in the system. But appropriate selection 
of location and size of these sources is necessary to realize these benefits. DG sources can be classified as P type, 
Q type or PQ type depending on the type of power provided by them. P type sources provide only active power, 
Q type sources provide only reactive power and PQ type provides active power, but may provide or consume 
reactive power. Solar photovoltaic systems are one of the most popularly used P type DG source. As per the 
status report (Jäger-Waldau, 2017) photovoltaic (PV) systems have the largest share of investments among 
renewable technologies and represent almost 50 % share among the renewable power capacity. With such a 
growth rate there has been a continued interest in deriving maximum benefits through optimal positioning and 
sizing of these sources. In literature the problem of DG allocation has been solved with different approaches 
such as analytical approaches, classic approaches such as linear and nonlinear programming optimization 
algorithms and heuristic approaches. In (Hung et al., 2010), the authors have proposed a method using analytical 
expressions to place multiple DG units of multiple DG types. An analytical approach using loss sensitivity 
factor to prioritize bus locations for DG placement has been proposed in (Acharya et al., 2006). In (Mahmoud et 
al., 2016), an efficient analytical (EA) method to optimally allocate a mix of DG types has been proposed. In 
addition a combined method involving EA and Optimal Power Flow algorithm has also been proposed by the 
same authors. A sequential quadratic programming method has been used to solve the DG sizing problem in 
(Sfikas et al., 2015). Linear programming has been used to find the optimal DG sizes and sites in (Keane and O' 
Malley, 2005). Due to computational ease, heuristic algorithm based solutions have found wide acceptance in 
literature for the DG allocation problem. Some of these methods are: Cuckoo Search Algorithm (Moravej and 
Akhlagi, 2013), Particle Swarm Optimization (PSO) based approach (Prakash and Lakshminarayana, 2016), Bat 
Algorithm (Sudabattula and Kowsalya, 2016), Hybrid Grey Wolf Optimizer (Sanjay et al, 2017), Water Cycle 
Algorithm (Abou El-Ela, 2018), Salp Swarm Algorithm (Sambaiah and Jayabarathi, 2019). Sensitivity index 
based approach has been employed to find optimal locations in (Murty and Kumar, 2015). Hybrid algorithms 
combining different heuristic techniques to optimize DG size and sites have also been proposed. In (Moradi and 
Abedini, 2012), a combination of PSO and Genetic Algorithm (GA) has been used to find optimal locations and 
sizes of DG sources. In this method the locations are searched using GA and the optimal sizes are calculated by 
PSO. A hybrid of Ant Colony Optimization to find candidate locations and Artificial Bee Colony Algorithm to 
optimize sizes has been proposed in (Kefayat et al., 2015). GA has been integrated with Tabu Search Algorithm 
to solve optimal DG placement problem in (Gandomkar et al., 2005). Heuristic methods have also been 
combined with sensitivity analysis to give faster solutions. The sensitivity factors narrow down the search space 
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increasing computational speed. Loss sensitivity factor (LSF) defined as, sensitivity of the system losses to an 
increase in effective power load at a bus has been combined with heuristic algorithms to find optimal placement 
of DG sources (Imran and Kowsalya, 2014; Prabha and Jayabarathi, 2016; Shukla et al., 2010).   
The review of literature shows that effective combination of approaches can successfully identify locations and 
calculate sizes of DG to reduce losses and improve performance of a distribution system. In this paper a new 
hybrid approach has been proposed to determine the optimal locations and sizes of PV sources using loss 
sensitivity factors (LSF) and a recent optimization algorithm, teaching learning based optimization (TLBO), 
considering minimization of losses as the objective function. The performance of the system with optimally 
allocated PV systems is calculated in terms of reduction in losses, improvement in voltage stability index and 
improvement in voltage profile. Though the use of TLBO for optimal allocation can be found in (Mohanty and 
Tripathy, 2016) it has not been considered in conjunction with loss sensitivity analysis. Also the locations and 
sizes in the paper have been determined with the objective of maximizing voltage stability.  
 
Loss Sensitivity Factor 
Loss Sensitivity factor (LSF) is used to find the sensitivity of system losses to a change in active or reactive 
power at a bus (Prakash and Sydulu, 2007). Consider a distribution line k connected between nodes p and q as 
shown in Fig. 1. Peff , is the total of active power supplied to all nodes beyond node q and the power supplied at 
node q. Similarly, Qeff is the total of reactive power supplied to all nodes beyond node q and the reactive power 
supplied at node q. Active power loss in the line k are given by (1). LSFP calculated as in (2) gives the 
sensitivity of losses to active power increment at a bus and LSFQ calculated as in (3) gives the sensitivity of 
losses to reactive power increment at a bus.  

 

 Fig. 1: Representative Branch in a Distribution Network 
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The locations with high values of LSFP or LSFQ are considered as candidate locations for placement of PV 
systems. This narrows down the search space while identifying the optimal locations and sizes of the PV 
systems. 
 
Problem Formulation 
With the aim of maximizing loss reduction with the placement of PV systems, the objective function is 
formulated as in (4) subject to the constraints (5) and (6). 
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where, nbr is no: of branches, Ik is the current in the kth branch and Rk is the resistance of kth branch. 
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where, Ndg is no: of buses with PV systems, Pt is penetration level and N is total no. of buses and Pi  is the load 
at a bus.  
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Voltage Stability Index 
Voltage stability indices predict the nearness of a system to voltage collapse. Optimal Placement of DG sources 
improves voltage profile and enhances the voltage stability. Improvement of voltage stability can be analyzed 
with voltage stability indices. Several researchers have made their contribution in formulating voltage stability 
indices. The voltage stability index (VSI) as proposed in (Chakravorty and Das, 2001) is used for stability 
calculations in this paper and is given by (7). P and Q are the active and reactive powers at the receiving node 
for a line connected between nodes i and j. Rline and Xline are resistance and reactance of the line. V is the voltage 
at sending end node i. 

 24 4 4
2

QP R Xj line linej
QSI V P X Rj line linej ji

V i

  
           (7) 

Teaching Learning based Optimization (TLBO) Algorithm 
TLBO is an efficient optimization technique introduced in (Rao et al., 2011). The algorithm is based on the 
effect of influence of a teacher as well as peers on the learning of students. The group of learners is the 
population, subjects form the design variables and the learners’ result forms the fitness value of the problem. 
The algorithm involves two phases, the teacher phase which takes into account influence of teacher and the 
learner phase which takes into account influence of peers on the result of a student.  
 
Teacher Phase 
The teacher is considered the best performer of the class. Therefore the teacher tries to steer the students towards 
his performance by increasing the mean result of the class towards his performance. Let j denote jth design 
variable (subject), k denote kth learner, Xj,k the value of jth variable for kth learner, Xj,kbest the value of jth variable of 
the best learner, Mj the mean value of all learners for the jth variable. The difference between the existing mean 
result of each subject and the corresponding result of the teacher for each subject is given by (8). 
 

 , ,X r X T Mj k i j kbest F j           (8) 

where, TF is teaching factor and ri is a random number between 0 and 1. The performance of each learner in a 
subject is then modified as (9).           

'
, , ,X X Xj k j k j k              (9)  

If the function result is better than the previous result, the modified value is retained. Otherwise it is discarded 
and the previous values of design variables are retained. The accepted design variable values become the input 
to the learner phase. 

Learner Phase:  
In the learner phase the learners interact among themselves to increase the knowledge. If there are two learners, 
p and q then for a minimization problem, the modification for learner p is given by equation (10) if the result of 
learner p is less than result of learner q and by (11) if result of learner q is less than result of learner p. For a 
maximization problem, the modification is given by (12) if result of learner p is greater than result of learner q 
and by (13) if result of learner q is greater than result of learner p, 
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The procedure to implement the algorithm to the problem of DG allocation can be described with the flowchart 
in Fig. 2.  
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                                       Fig. 2: Flowchart of TLBO Algorithm to allocate PV Units 
 
Results and Discussions 
The proposed methodology is tested on two test systems. The first system used in this paper is a 33 bus radial 
distribution test system with a total connected load of 3.715 MW and 2.3 MVar (Kashem et al., 2000) and the 
second test system is a 69 bus radial distribution test system with a total connected load of 3.802 MW and 2.69 
MVar (Baran and Wu, 1989). The sizing of PV systems is assumed as continuous. The candidate locations are 
chosen by ranking the buses as per loss sensitivity factors LSFP, calculated using (2) and LSFQ, calculated 
using (3). The forward backward sweep method (Haque, 1996) has been used in the calculation of the loss 
sensitivity factors, distribution losses, voltage profile of the system and voltage stability index. Twenty percent 
of the total no. of buses based on both LSFP and LSFQ ranking are identified as possible locations for 
placement of PV systems and are tabulated in Table I for IEEE 33 bus and IEEE 69 bus system. The final 
optimal locations and sizes are then calculated using TLBO algorithm. 
Results of 33 Bus System:  
The total losses calculated for the system with base load is 210.07 kW. The voltage stability index is 0.6764 with 
a minimum voltage of 0.9069 at bus 18. The final locations and sizes of PV systems have been calculated 
considering search spaces obtained with LSFP, LSFQ and a combination of LSFP and LSFQ. The performance 
analysis with all the three cases are tabulated in Table II.  
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Table I: Candidate Locations Identified for PV Systems for IEEE 33 and 69 Bus Systems 
Test 
system 

Candidate locations based on 
LSFP  
 

Candidate  locations based on 
LSFQ 

Candidate locations based 
on LSFP and LSFQ 

33 bus 5,6,8,9,24,28,29 5,6,9,13,24,28,29 5,6,8,9,13,24,28,29 
69 bus 2,3,6,7,14,15, 54,55,56, 

57,58,59,60,61 
2,3,6,7,14,49,54,55,56, 
57,58,59,60,61 

2,3,6,7,14,15,49,54,55,56,57
,58,59,60,61 

 
Table II: Comparison of Results with Different Sensitivity Factors for 33 Bus System 

Factor  
DG locations 

DG sizes Losses(kW) Min voltage and 
location 

VSI 

LSFP 6,9,24,29 335.59,846.79, 682.76,846.79 76.5  0.9574(18) 0.8401 
LSFQ 6,13,24,29 498.23,680.47,689.15,844.09 71.52  0.9634(33) 0.8614 
LSFPQ 8,13,24,29 441.078,572.07, 761,929.79 70.87  0.9640 0.8636 

 
                       Table III: Performance Analysis of 33 Bus System in the Presence of PV Systems 

 Bus no: DG size(kW) Total DG 
size(kW) 

% of penetration Distribution 
losses(kW) 

Without DG … ….. ….. … 
 

210.07 

Proposed method 

8 441.078 

2711.9 72.99 70.87 
13 572.07 
24 761 
29 929.79 

[14] 
GA 

11 1500 
2994.2 80.59 106.3 29 422.8 

30 1071.4 

[14] 
PSO 

13 981.6 
2988.1 80.43 105.3 32 829.7 

8 1176.8 

[17] 
LSF-BFOA 

14 652.1 
1917.7 51.6 89.9 18 198.4 

32 1067.2 
[9] 
BA 

 

15 816.3 
2721 73.24 75.05 25 952.35 

30 952.35 

[4] 
EA 

13 798 
2947 79.33 72.787 24 1099 

30 1050 

[4] 
(EA-OPF) 

13 802 
2947 79.33 72.79 24 1091 

30 1054 

[10] 
HGWO 

13 802 
2946 79.3 72.784 24 1090 

30 1054 
It is seen from the results that choosing the candidate locations based on both LSFP and LSFQ is more 
advantageous than choosing locations based on any one factor as it gives lower distribution losses. The total 
penetration of DG is distributed in four locations giving a total loss of 70.87 kW with a total reduction of 66.26 
% as compared to the base case. The voltage constraint has also been realized with the minimum voltage being 
0.9640 at bus no: 33. The voltage stability also shows considerable improvement with the index value (VSI) 
increasing to 0.8636. A comparative analysis of the results based on different methods is also given in Table III. 
The results show that the calculated losses are lowest with the proposed method. The DG sources are distributed 
in four locations but the penetration level is least at 73 %.  
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Table IV: Comparison of Results with Different Sensitivity Factors for 69 Bus System 

Factor 
 
DG locations 

DG sizes Losses(kW) 
Min voltage 
and location 

VSI 

LSFP 
7,15,55,60,61 321.454,483.397,70.38, 

883.577,883.577 
72.03  0.9783(65) 0.9159 

LSFQ 
7,14,49,59,61 187.5,525.2,188.3, 

125.6,1615.9 
70.61 0.9785(65) 0.9168 

LSFP 
and 
LSFQ 

14,15,49,59, 
61 

313.5,232,366.6, 
114.7,1615.6 69.16 0.9789(65) 0.9184 

 
Table V: Performance Analysis of 69 Bus System in the Presence of PV Systems 

Method Bus no: DG size(kW) Total DG 
size(kW) 

% of 
penetration 

Distribution losses 

Without DG … …. …. …. 224.79 

Proposed method 
LSF-TLBO 

14 313.5 

2642 69.48 69.16 
15 232 
49 366.6 
59 114.7 
61 1615.6 

[14] 
GA 

21 929.7 
2989.7 78.63 

89 
 
 

62 1075.2 
64 984.8 

[14] 
PSO 

61 1199.8 
2987.9 78.58 83.2 63 795.6 

17 992.5 
[17] 

LSF-BFOA 
 

27 295.4 
2088.1 54.9 75.238 65 447.6 

61 1345.1 

[11] 
WCA 

61 775 
2318 60.96 71.5 62 1105 

23 438 

[4] 
EA 

61 1795 
2642 69.48 69.62 18 380 

11 467 
[4] 

EA-OPF 
 

61 1719  
2626 

 
69 69.43 18 380 

11 527 
[10] 

HGWO 
11 527  

2625 
 

70.65 
 

69.425 17 380 
61 1718 

 
Results of 69 Bus System: 
The total losses calculated for the system with base load is 224.79 kW. The voltage stability index with base 
load is 0.6838 with a minimum voltage of 0.9093 at bus 65. The performance analysis of the system with the 
three different search spaces using only LSFP, LSFQ and both LSFP and LSFQ are listed in Table IV. It can be 
seen that as in the case of 33 bus system, for 69 bus system also, it is more advantageous to choose candidate 
locations based on both LSFP and LSFQ as the losses are lesser. With the 69 bus system, the total losses are 
found to be 69.16 kW with a total reduction of 69.23 % as compared to the base case. The voltage constraint has 
also been realized with the minimum voltage being 0.9789 at bus no: 65. The voltage stability also showed 
considerable improvement with the index value (VSI) increasing to 0.9184. A comparative analysis of the results 
based on different methods is also given in Table V. The results show lower losses as compared to other existing 
methods. Though five locations have been identified, the DG penetration is equal or lesser at 69.48 %. 
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Conclusion 
The introduction of DG into the traditional distribution network plays a major role in reducing the losses in the 
system and improving the voltage stability. In this paper an optimization procedure based on loss sensitivity 
factor and TLBO algorithm has been developed to place and size PV systems which are active power producing 
DG sources to achieve improved voltage stability with reduced losses. The effectiveness of the procedure has 
been validated with results from two different test systems and has been compared with existing techniques. The 
results show that consideration of loss sensitivity to an increase in both active and reactive power at a bus are 
required for identifying proper candidate locations. TLBO has proved to be an effective algorithm in finalizing 
the optimal positions from the candidate locations and the sizes of the units to give minimum losses. The 
solutions obtained using the method result in lower losses as compared with existing methods. 
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