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Abstract 
A multiplier plays a vital part in multimedia and digital signal processors. The integer unit alone cannot achieve the 
desired computational speed required by modern applications. Unit specially designed to carry out operations on 
floating point numbers is required also commonly known as floating-point unit. The IEEE 754 standard is used for 
defining the format of floating point number which is widely accepted. Basically, two formats are used for 
representing the floating point numbers, single precision which works on 32- bit floating point 
numbers whereas double precision working on 64 bit. Though the number of bits on which double precision 
operates doubles as compared to single precision number, it is hardly used due to its requirement of very large 
memory and also the delay generated for  the IEEE-754 standard floating point multiplication. This is the mojor 
reason for its rare implementation in designs requiinge high computing speed.[1] In this paper we are proposing 
three efficient algorithms for enhancing the speed and optimizing the area required for implementing single 
precision floating point multiplication. Also compared  the results in terms of power dissipation, execution time and 
area requirement for the implementation with the conventional methods used. Here the algorithms are implemented 
and analyzed by using the most popular semi-custom design tool Vivado ISE 2015 and is synthesized by using 
Artix-7 FPGA and the same is reflected in the mathematical model purposed for each circuit. 
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Introduction 
The microprocessors / microcontroller technically designed to handle the arithmetic operations for integers and less 
attentation is paid on arithmetics for real numbers.[2]. There are different ways a CPU can use to calculate the 
values for any floating point operation. The first method is by calling a floating-point emulator, that is nothing but 
the library of series of simple floating-point functions a than CPUs integer arithmetic operations which runs on the 
fixed-point ALU.[3]  This method saves hardware but very slow. Second method is to use separate   FPUs. The 
speed up of these operations is quite important, because floating point numbers are used in a wide range of 
applications including CAD, games, graphics, multimedia, and scientific applications also. Also, it is very important 
for data analysis and manipulation of various signals within Digital Signal Processing (DSP) devices. Floating point 
numbers are used to represent very small to very large numbers. In floating point arithmetic operations, addition and 
subtraction are less complex and easy to implement in terms of area required and power dissipation. Multiplication 
of floating-point numbers requires complex algorithms and it uses more space and there is high power dissipation as 
well as complex circuits are required. Several algorithms are available for calculation of floating point 
multiplication. 
IEEE754 Standard  
A technical standard for representing floating-point numbers was established in 1985 by the Institute of Electrical 
and Electronics Engineers (IEEE), known as IEEE 754 standard. The figure 1 shows the generalized format of 
floating point number for various precisions in IEEE standard. It is described by three integers:[1] 
                  s = a sign (zero or one) 
                  z = a significand  
                  e = an exponent  
The value is represented as shown in below equation for any floating point number, 
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(-1)s × 2e-127 × 1.z       
 s E z  

msb exponent Significand 
Figure 1: Floating Point Number Format  

The table given below summaries the number representation in various precision formats. 
Table 1: Floating Point Format’s Parameters[11][12] 

Parameter Single Precision Double Precision Quad Precision 

Bytes 4 8 16 

bias, E-e 127 1023 16383 

sign bit 1 1 1 

exponent bits 8 11 15 

significand bits 23 52 112 

Smallest Positive Normal Number 1.175... 10-38 2.225... 10-38 3.362... 10-4932 

Largest Positive  Number 2.225... 10+38 1.797... 10+38 1.189... 10+4932 

Significant Digits  (Decimal) 6 - 9 11 - 15 33 
 

Table 2: Encoding of  (-1)s × 2e-127 × 1.f  into Binary Fields 

Number Type Sign bit, s Exponent bits, c significand bits, 
q 

significand bit, q+1th 

NaNs ? 111…111 Binary 1xx..x 1 

+ Infinity  0 111…111 0000..…000 1 

- Infinity  1 111…111 0000..…000 1 

Subnormals  (-1)s 0 ≠ 0 0 

Zeros  0 0 0 0 
 
This paper is focusing on novel algorithms for performing multiplication operations on single precision floating 
point numbers. The format of single precision floating point number is shown in figure 1.[8]  A Single precision 
result gives upto 9 significant decimal digits precision value. The sign of the number, s is the msb bit, that is 
reflecting whether significand is positive or negative. The  unsigned integer e, is used to resemble the value of 
exponent from 0 to 255. It is the valid value of bias form in IEEE754 single precision number. The 23 bits at the 
right of the binary point indicates the signifand, z of the actual number. It do not constitute the leading bit 1, of the 
actual 24 bit precision.  
The example below explains the procedure of multiplication of 2 floating-point numbers Y and Z. 
Y = 23.5 and Z = 8.5  
Binary equivalent of the decimal values Y and Z are: 
Y = 10111.1 and Z = +1000.1 
Normalized representation of the operands:  
Y = 1.0111x24 and Z = +1.0001x23 
IEEE representation of the operands:  
Y = 1 10000011 01110000000000000000000  
Z = 0 10000010 00010000000000000000000 
Exponent of the result is calculated adding the operands exponents. A 1 can be added if needed by the normalization 
of the mantissas multiplication. The exponent fields (ey and ez) are biased, and are removed for carrying out the 
addition. Later on the bias should be added again to get the value to be entered into the exponent field of the result 
(er): 
er = (ey -127) + (ez -127) + 127 
= ey + ez – 127 
 in our example, 7 is the exponent of the result  
ey = 10000011, ez = 10000010 and  -127= 10000001 
The sign of the result (sr) is calculated by the exclusive-OR of the operands sign bits (sa and sb). [9] 
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sr = sa ⊕ sb  
in the example considered: sr = 1 ⊕ 0 = 1. It indicated a negative valu for the sign value generated.  
After composing the result generated by setting above three intermediate results (sign, exponent and mantissa) final 
result of  multiplication will be as follows: 

Y x Z = 23.5 x 8.5 =1.100011111 x 2134-127   

 
Figure 2: Single Precision Floating Point Format [10] 

 
Real Number to IEEE754 Conversion 
Algorithm for Conversion of Real Number to IEEE 754 Standard 
1. Integer (A)10 and fractional (B)10 parts are extracted from the real number. 
2. (A)10  and (B)10  of the real number will be converted to binary i.e. A2 and B2  using division methods 

respectively. 
3. A2 (n-bits) will be stored in 32-bit register.  
4. A2 will be shifted by 32 - n bits to its left by a barrel shifter.  
5. Converted fractional part (B)2 will be stored in a 32-bit register and will be shifted by 32- n - m bits to its left by 

the barrel shifter where m is number of bits in B2.  
6. The shifted value of A2 and B2 will be added by a 32-bit adder block having half adders.  
7. Output of this will be normalized using a shifter and comparator circuit.  
8. Normalized output will be a 24-bit mantissa which will be stored in the memory.  

 
Figure 3:  Block Diagram for Converting Real Number to IEEE 754 Standard 

 
Floating Point Multiplication 
A generalized diagram for carrying out the multiplication of two floating point numbers is shown in figure 4. The 
main focus of the proposed algorithms will be to optimise the 24-bit multiplier block in terms of area and speed of 
execution. . The main aim is to reduce the partial products count and also the size of the operands on which the 
efficient multiplication algorithms will be applied. 
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Figure 4: Procedure for Floating Point Multiplication 
Proposed Work 
The proposed multiplication algorithms can be applied on the 23-bit mantissa’s of the two single precision floating 
point numbers. An Array multiplier generally requires O(n2) time for calculating the product of two numbers and 
also requires a large storage space hence not efficient if it is required to multiply long values. O indicates the 
complexity of the computation.[7] The conventional methods do not help in optimizing the area and speed of the 
multiplier block. Hence efficient algorithms are required to achieve the same. 
1.1. Proposed Method 1 
The multiplication methods based on Vedic mathematics have proved to be efficient where area and delay are of 
prime importance. Karatsuba algorithm splits the inputs into two halves.[5] The concept is to reduce the size of the 
multiplicand and multiplier of length n into three partial products of length n/2 alongwith some overhead.[6][13] 
Russian Peasant algorithm is helpful in case of multiplication of small numbers. It reduces the multiplicand to half 
on each step until it is reduced to one, parallelly doubling the multiplier on the other side at each step. Now note 
down the steps where the multiplicand is odd and add the corresponding multiplier which will give the final product.  
Russian Peasant Multiplication proves out to be faster than Urdhva Tiryagbhyam algorithm for the multiplication of 
two ‘n’ bit numbers. Taking the advantage of Karatsuba algorithm as best suited for operands of higher bit length 
and Russian Peasant Multiplication to perform the multiplication on generated partial products, an efficient 
multiplication algorithm can be implemented. Karatsuba algorithm is used to reduce the large data into smaller size 
as shown in figure 5 and Russian Peasant algorithm can be applied for multiplication on these reduced size data as 
shown in figure 7, to overcome the disadvantages of  the algorithms makes the proposed multiplier efficient. The 
performance of Russian Peasant algorithm works very well for lower bit multiplication and Karatsuba algorithm is 
best for higher bits. By combining both the methods a new algorithm is proposed to reduce the drawbacks of both. . 
Proposed Algorithm I: 
Step 1.  Divide the number of bits present in the operands  in two equal halves. 
Step 2. The equation of the multiplier becomes, 
= 2nX1Y1 + 2n/2[(X1.Y1 + XrY1) – (X1 - Xr)(Y1 - Yr)] + XrYr  
Step 3. Compute the above variables individually. 
Step 4. Apply Russian Peasant algorithm to calculate the partial products. 
Step 5. Now add the individually acquired result to compute the final value . 
Example: Multiply X =10101011 and Y=10100110 using proposed Algorithm I 
X =2n/2X1 + Xr 

Y = 2n/2Y1 + Yr 
X.Y = (2n/2X1 + Xr). (2n/2Y1 + Yr) 
     = 2nX1Y1 + 2n/2(X1.Yr + XrY1) + XrYr  
   = 2nX1Y1 + 2n/2[(X1 - Xr)(Y1 - Yr) –(X1.Y1 + XrYr)] + XrYr 
The above equation shows that using Karatsuba algorithm, three multiplications, three subtractions and three 
additions are the total number of operations required. To multiply two 2-digit numbers using O(nlog

2
3) single digit 

multiplications  are required[4].  
(X.Y) + Q = S 
Now if X is even then X=2a for some a.  
So it can be written as: 

sign          exponent                               mantissa  

sx  sy 
          e1          e2 

8-bit Exponent 
 adder 

 
24-bit Mantissa 

Multiplier 

m1         m2 
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(2a.Y) + Q = S 
(a.2Y) + Q = S 
If X is replaced with half  its value, and Y is doubled in its value, and reflected as X' and Y' then the above equation 
can be written as: 
(X'.Y') + Q = S 
In other words, when X is even, it can halve the first number and double the second, and the condition still remains 
true.  
When X is odd, then it can be written as X=2k+1 for some k. 
X.Y + Q = S 
(2a+1). Y + Q   = S 
2a.Y + Y + Q    = S 
2a.Y + (Y + Q) = S 
a.2Y + (Y + Q) = S 
X'.Y' + (Y + Q) = S 
We can reflect X’ for half value of X, and Y' for the double value of Y. this is valid if we add the number in the 
second column to the running total. It can be seen that after we follow the algorithm the ethis equation balanced. But 
when we finish, the number in the first column is 0. The final equation left is: 
0 x Y’ + Q = S 
Or simply Q = S. the sum is the previously unknown product that was required  
 

 
 
 
 
 

Figure 5: Splitting of Mantissa in Smaller Size using Karatsuba Algorithm 
The working of  Russian Peasant algorithm is diagramically shown in figure 6. All the calculations are done 
simultaneously hence the time required for calculations will be comparatively less. 
 

Table 3: Booths Multiplier Example[14][15] 
A Q Q-1 M Operation Cycle 

0000 0101 0 0110 Initial values  
1001 
1100 

0101 
1010 

0 
1 

0110 
0110 

A = A-M 
Shift 

First cycle 

1110 0101 0 0110 Shift Second cycle 
0101 
0010 

0101 
1010 

0 
0 

0110 
0110 

A = A - M 
Shift 

Third cycle 

0001 0101 0 0110 Shift Fourth cycle 
 

 
Figure 6: Example of multiplication using Russian Peasant 

X = 24-bit mantissa of multiplier Y = 24-bit mantissa of multiplicand 

X1=12-bit Xr = 12-bit Y1=12-bit Yr = 12-bit 
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1.2. Proposed Method 2 
Out of the various multipliers designed and developed, the Booth’s multiplier is considered to be one of the standard 
technique used that enhances the operating speed with smaller circuits. This is achieved by using encoding 
techniques to the signed numbers of 2’s complement. The proposed method is based on the same logic to reduce the 
size of the multiplier and multiplicand into half. This is done by using Karatsuba algorithm. The following example 
is demonstrated  with the Booth algorithm in the above table   610 x 510 = 01102 x 01012 

The multiplier and multiplicand can be denoted as M = (6)10  and Q = (5)10 in binary number system. Three registers, 
namely A, Q and M each of size 2n +1 bits is required, if data size is n-bits. The initial value stored in A is the most 
significant bits of M, Q will hold the most significant bits of -M and fill their remaining bits with zero. The two least 
significant bits of Q determine what operation will be performed on A and M. If these bits are “01” then, find the 
value of  A+M else calculate A - M if they are “10”. For “00” or “11” no operation is performed, the values of A are 
arithmetically shifted as shown in above example. The process is repeated n times and the product is obtained from 
Q by dropping its least significant bit. 
Result 
The proposed architectures of multiplier circuits are compared with the existing algorthms. It is found that the  
second algorithm proposed requires nearly 30% less power as compared to the first method proposed.  Area 
rerequired is 50.75% less in the first proposed method as compared to second method whereas 14% more as 
compared to Karatsuba Algorithm. The computational delay i.e pin to pin delay on the device is 30.21% less as 
compared to the first proposed method and 12.8% less in comparision with Booth multiplier which is mostwidely 
used algorithm for multiplication.  

Table 4: Comparison of different Algorithms on Device XC7A35T-CPG236 
On-chip  Booth  Karatsuba  Russian Peasant  Urdhva Tri  Proposed-I  Proposed-II  

SliceLUT 62 85 55 114 99 108 
Slice Reg 20 -- 60 -- -- 93 
Flip-flops -- -- 62 -- -- -- 
Bonded IOB 34 21 34 33 32 34 

Power (W) 8.261 14.313 1.649 13.753 13.545 9.467 
Delay (ns) 69.8 15.563 99.517 12.4 11.35 34.017 
ADP 5723.6 1322.855 17614.509 1413.6 1340.955 6837.417 
PDP (nJ) 401.629 222.753219 164.103533 170.537 153.736 322.039 
APP 632.94 1216.605 291.873 1980.432 1340.955 1902.867 

 

 
Figure 7: Graphical Comparision of Area Delay Product Performance Parameter and Graphical 

Comparision of Power Delay Product Performance Parameter 

 
 

Figure 8: Graphical Comparision of Area Power Product Performance Parameter and Graphical 
Comparision of Different Performance Parameters Area, Delay and Power 
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Conclusion 
Using Xilinx FPGA, two aalgorithms are proposed to perform a 24*24 significand multiplication for IEEE single-
precision numbers. The first method proposed uses less area in terms of LUT’s as compared to second method 
proposed. Also the computational time required to perform the multiplication is nearly one third as that required by 
the second proposed method. The proposed multiplier is faster than all the other algorithms and also the power delay 
parameter has proved out to be very good.  
 
Refrences  
[1] Shiann-Rong Kuang, Jiun-Ping Wang, and Hua-Yi Hong, “Variable-Latency Floating-Point Multipliers for 

Low-Power Applications”, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) 
SYSTEMS, VOL. 18, NO. 10, pp.  OCTOBER 2010.  

[2] Jean-Pierre Deschamps, Gery Jean Antoine Bioul and Gustavo D. Sutter, “Floating Point Unit”, in Synthesis of 
Arithmetic Circuit, Hoboken, New Jersey,A john Wiley & Sons, inc., publication, 2006, pp. 513-548. 

[3] S. Sun and J. Zambreno, “A floating-point accumulator for fpga-based high performance computing 
applications,” in Field-Programmable Technology, 2009. FPT 2009. International Conference on, 2009, pp. 
493–499. 

[4] B. Catanzaro and B. Nelson, “Higher radix floating-point representations for fpga-based arithmetic,” in Field-
Programmable Custom Computing Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on, april 
2005, pp. 161 – 170A.  

[5] P.L.Montgomery, “Five, Six, and seven-Term Karatsuba-Like Formulae,” IEEE Transactions on Computers, 
Vol. 54, No. 3, pp. 362-69 

[6] A. A. Karatsuba: The Complexity of Computations. Proceedings of the Steklov Institute of Mathematics, Vol. 
211, 1995, pages 169 - 183, available at http://www.ccas.ru/personal/karatsuba/divcen.pdf. A. A. Karatsuba 
reports about the history of his invention and describes it in his own words 

[7] Julio Villalba, Javier Hormigo, Francisco Corbera, Mario Gonzalez and Emilio L. Zapata Dept. of Computer 
Architecture, University of Malaga, SPAIN “Efficient Floating-Point Representation for Balanced Codes for 
FPGA Devices”  

[8] J. Villalba and J. Hormigo, “Apendix to paper efficient floatingpoint representation for balanced codes for fpga 
devices http://www.ac.uma.es/∼julio/apendix iccd 2013.pdf.” 

[9] Xilinx Corporation. http://www.xilinx.com/tools/coregen.htm, 2012 
[10] D. W. Bishop, “VHDL-2008 support library,” 2011. [Online]. Available: http://www.eda.org/fphdl/  
[11] IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008, New York: IEEE, Inc., 2008. 
[12] Manish Kumar Jaiswal.Ray C. C. Cheung “VLSI Implementation of Double-Precision floating Point Multiplier 

usingKaratsuba technique”. 
[13] Karatsuba & Yu. Ofman, Multiplication of Multidigit   Numbers on Automata (in Russian), Doklady Akad. 

Nauk SSSR 145 (1962), pp. 293-294, Englis h translation in Soviet Physics Doklady 7 (1963), pp. 595-596. 
[14] John and Earl E. Swartzlander,  “Improved Architectures for a Fused Floating-Point Add-Subtract Unit 

Jongwook” 
[15] Gustavo D. Sutter, Enrique canto and Jean-Pierre Deschamps,”Floating Point Arithmetic”, in Guide to FPGA 

Implementation of Arithmetic Functions, springer 
 


