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Abstract 
Texture synthesis which grows source texture image into a bigger texture image is applied for data embedding, instead 
of using a readily available digital image as a carrier for data. The patch based texture synthesis is used to embed the 
data in patches. The selection of a suitable patch for texture synthesis is dependent on data to be hidden. At receiver, 
embedded data is recovered along with source texture. The efforts are taken to improve the speed of the data extraction. 
In the process of data extraction, the matched candidate patch is identified at every patch location of stego synthetic 
texture image. If it is done by referring to the energy value of the kernel region than by comparing the whole patch 
with all candidate patches for similarity, data extraction is almost 40 times faster. 
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Introduction 
For secure communication of secrets or private information such as in military or banking applications, cryptographic 
methods are used. By cryptography, plain text information is converted into cipher text. The cipher text can attract the 
attackers because of meaningless and random nature. It is essential to hide the existence of secret information in data 
transit. Generally, in steganography, the information is hidden in the cover image by altering the pixel values which 
may lead to distortion in the stego image. In contrast to this, data is embedded through the process of texture synthesis. 
This approach of steganography is more secure since pixel values are not altered. The volume of embedded data is 
directly proportional to the dimensions of output stego synthetic texture image. Depending upon the length of data to 
be hidden, size of stego synthetic texture image can be varied. Source texture is recovered at receiving end and is used 
for the next iteration of data exchange. In our proposed work, for the data extraction process, if energy values of 
candidate patches are used for distinguishing them from one another instead of finding patch structural similarity, data 
extraction time is reduced by the factor ≈ 40. For example, in data embeddable texture synthesis of sample from D20 
texture image of Brodatz Album, data extraction time is reduced from 4668.68 sec to 117.35 sec i.e. by a factor of 
39.78.  
 
Related Works 
H. Otari et al. [1] uses LBP patterns for photograph readable data hiding and S.C. Liu et al. [2] combined Art image 
generation with data hiding provides less embedding capacity. Kuo-Chen Wu et al. [3] uses patch based texture 
synthesis for data hiding and by using other approaches of texture synthesis and data hiding, image quality and 
embedding capacity can be increased. The execution time is 6.8% to 8.7% more if compared with a pure texture 
synthesis process. As per experimentation of Efros Alexei A.and Thomas K. Leung, pixel by pixel texture synthesis 
is slow and facing problems like growing garbage, verbatim copying [4]. Wei Li-Yi, and Marc Levoy uses 
multiresolution synthesis for textures containing large scale structures [5]. In patch based sampling of Liang Lin et 
al., texture synthesis can be faster and boundary treatment is needed [6]. A. A. Efros and W. T. Freeman synthesized 
a texture by stitching patches of existing texture images. Minimum error boundary cut is taken at overlap of two 
blocks. Performance is better for random textures and semi-structured textures. It is a fast and simple algorithm, 
extended for texture transfer but excessive repetition and distortion at boundaries are observed in this algorithm [7]. 
Sylvain Lefebvre and Hugues Hoppe use neighborhood matching method for efficient parallel synthesis with addition 
of user controls [8]. Instead of using single exemplar image as in traditional texture synthesis, Charles Han et al. use 
some input exemplars at multiple scales for texture synthesis [9]. Jian Muwei et al. proposed efficient wavelet 
transform based texture synthesis algorithms [10]. Joshi Mangala S. et al. used simultaneous AR model to estimate 
parameters for texture synthesis [11]. Data hiding can be done by histogram shifting [12] and prediction error [13]. 
Qin Chuan et al. proposed simultaneous data hiding and compression [14]. Schottle Pascal and Rainer Bohme 
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analyzed adaptive embedding in presence of attackers [15]. Weiyi Wei et al. [16] propose data hiding through texture 
synthesis based on LBP. This approach gives increased embedding capacity, robustness and good visual effect. 
Texture synthesis can be done by pixel based, patch based and parameter estimation based methods. Data hiding can 
be done in spatial domain and Transform domain.     
 
Proposed Method  
Ahead of understanding the actual algorithm, one must know the basic terminology used such as source texture, patch, 
kernel region, boundary region, source patches and candidate patches. 
Texture image sample of size Sw × Sh which is the seed for data embeddable texture synthesis is called as source 
texture. A part of the source texture with size Pw×Ph is called a patch. The central part of patch with size Kw×Kh is a 
kernel region which is surrounded by boundary region of width Pd such that  
Pw= Kw +2 Pd            (1) 
Ph = Kh +2 Pd            (2) 
The source texture of size 128×128 is further divided into 16 equal and non overlapping blocks called kernel blocks. 
Each kernel block has the size of 32×32. All borders of every kernel block are extended with the depth of 8 pixels to 
generate source patches.  
In texture synthesis, the most suitable patch is selected from a number of candidates to paste at the current working 
location. So we need to generate a set of candidate patches. To generate candidate patches, a window of 48×48 size is 
considered. This window is moved on a source texture of size 128×128 pixels with a jump of one pixel each time. 
Message embedding procedure 
Message embedding procedure is explained in this section. The corresponding block diagram is shown in figure 1. 
The text message is embedded in the stego texture image through the texture synthesis process. It consists of index 
table generation, candidate patches and source patches generation from source texture and message oriented texture 
synthesis. 

 
Figure 1: Message Embedding Procedure 

 
Index table generation - Index table is generated to keep track of type of patch pasted in texture synthesis process. 
This will help to retrieve the source texture exactly at receiver. Index table contains 12 columns and 12 rows. The size 
of the index table depends on the quantity of secret message to be hidden. Total numbers of entries in the index table 
are 144. Out of 144 locations of stego synthetic texture image, 16 are used for source patches pasting and remaining 
128 locations are filled up by data oriented candidate patches.  
Candidate patches generation - Candidate patches are generated from source texture of size Sw × Sh by taking a jump 
of one pixel every time and cropping a patch of size Pw × Ph. Number of candidate patches generated is given by NCP 

N  = (S  −P   + 1 
 ) × (S  −P   + 1 

 )           (3) 
One parameter is required which differentiates all the candidate patches from one another.Energy value at kernel of 
each candidate patch is calculated by using the equation 4. 

𝐸 = ∑ ∑ | 𝑃  (𝑗, 𝑘)|                       (4) 

Where, Ei is overall energy in the kernel region of ith candidate patch.  
Pi(j, k) is pixel at location (j,k) in the kernel region of ith candidate patch.  
M and N denote the size of the kernel region of ith candidate patch. 
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The Energy value of candidate patche’s kernel region is able to distinguish the candidate patches from each other. 
Only unique candidate patches are retained . 
Source patches generation - The source texture of size Sw × Sh is divided in non overlapping kernel blocks of size 
Kw×Kh. These kernel blocks are extended with the width Pd of 8 pixels. If the kernel block is situated across the 
boundary of source texture, then symmetrical contents of that kernel block at boundary are used for expansion 
purposes otherwise the kernel block will be extended in neighboring Kernel blocks to generate boundary. Number of 
source patches generated is given by NSP as in equation 5. 

𝑁 =
 

 
 ×

 

 
              (5) 

Source patches pasting - Key is used to decide upon the locations to be used for source patches pasting. While selecting 
the locations, the boundary area of the work bench is skipped. Out of remaining locations, alternate rows and columns 
are the candidate positions for source patches pasting to reduce the variety of overlapping of source patches with 
candidate patches. 16 locations are randomly selected for source patches pasting. These locations of scan line order 
are converted into corresponding row number and column number. For e.g. Location no.40 means (row no=4, column 
no=4), since the workbench consists of 12 rows and 12 columns. Source patches are pasted at these randomly selected 
locations in the texture synthesis process. 
Data Embeddable texture synthesis - All locations of the work bench, other than source patches positions are 
synthesized by using candidate patches. Mean square error is calculated at the overlapping area between each 
candidate patch and already synthesized region. Then candidate patches are arranged as per MSE values. The 
candidate patch having minimum MSE value indicates the best match with the synthesized area. In pure texture 
synthesis, this patch with rank 1 is pasted at the current working location. To make texture synthesis data embeddable, 
the candidate patch having rank equal to the ASCII value of the character from secret message to be hidden is selected. 
One character is concealed in the selected candidate patch. Stego synthetic texture image is formed with message 
oriented patch selection and compared with source texture image to calculate SSIM value for quality checking purpose. 
To enhance the quality of synthesized texture, a minimum error path through the overlapped region is traced while 
stitching the selected candidate patch in the workbench. This is the optimal boundary between selected candidate patch 
and the previously synthesized surrounding patches [7]. 
Message extraction procedure 
Message extraction is done from received stego synthetic texture image at the receiving end. The block diagram given 
in figure 2 explains the message extraction process. 
 

 
Figure 2: Message Extraction Procedure 

 
Recovery of source texture - At the receiving end, with the help of the same secret key, index table is generated as in 
data embedding procedure. With the help of the index table, the locations of source patches pasting are traced. The 
kernel part of source patches is extracted and organized in order to build original source texture back. Source texture 
is recovered which gives SSIM value equal to 1 with source texture of data embedding procedure. It assures the exact 
recovery of source texture. 
Source patches and candidate patches generation - From the recovered source texture, source patches and candidate 
patches are generated by following the procedure as in data embedding. Every candidate patch must be unique. 
Matched patch retrieval - The locations of stego synthetic texture, at which data is embedded in terms of selected 
candidate patches, are referred one by one. The stego kernel region of size 32×32 is extracted from the current working 
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location. Then it is compared with kernel region of every candidate patch to find exact matching patch with stego 
kernel region of current working location. It is referred as matched patch of that location. The energy value of the 
stego kernel region is compared with the energy of every candidate patch’s kernel region.  
MSE value calculation - For extraction of character from pasted candidate patch, MSE value calculation is needed. At 
the current working location, the entire candidate patches set is tested one by one. MSE value of overlapping area 
between each candidate patch and already synthesized surrounding patches is calculated.  
Data extraction - All the candidate patches are ranked as per MSE values calculated for current working location. The 
rank of the matched patch of that working location can be located from the sorted MSE index. This rank is nothing 
but the ASCII value of the concealed character.  
Extraction of data from the first row of stego synthetic texture - In the data extraction from the first row of stego 
synthetic texture, the MSE value calculation involves only vertical overlap with adjacent patch.  
Extraction of data from row number 2 onwards of stego synthetic texture - In the data extraction from row ≥ 2 of stego 
synthetic texture, the MSE value calculation involves vertical as well as horizontal overlap with adjacent patches.  
 
 

 

 
 
 
 
 
 

Figure 3: Horizontal Overlap and Vertical Overlap 
 
If the extraction of data is to be done from the given shaded patch C at current working location of figure 3 at (i=2,j=4)  
i.e 2nd row and 4th column , then 
Overlap_horizontal =Y_H = Y_01+Y_02 +Y_03                (6)  
Y_01= Y1 (1:8,41:48)           (6a) 
where Y1=matched_patch {i,j-1}, i.e. Y1 is a matched patch at the same row but previous column of  current working 
location.    
Y_02= Y2 (41:48,9:40)          (6b) 
where Y2= matched_patch {i-1,j}, i.e. Y2 is a matched patch at the previous row but same column of  current working 
location.    
Y_03= Y3 (41:48,1:8)           (6c)  
where Y3=matched_patch {i-1,j+1}, i.e. Y3 is a matched patch at the previous row and next column of  current working 
location.   
Overlap_vertical = Y_V                              (7) 
Y_V= Y1 (1:48,41:48)                                                                                                                           (7a) 
where Y1=matched_patch{i,j-1}.  
Subtract the region of 8×8 pixels which is common in horizontal and vertical overlap for rows and columns greater 
than 1 ie for the case  {if( i >1 && j >1 )} 
 
Results and Discussion 
The experimentations are performed on a system having i5-3230M CPU @2.60GHz and 4 GB RAM.64 bits operating 
system. The software used for algorithm development is Matlab R2014a. The source textures used for texture synthesis 
are Brodatz gray textures as well as some colored textures. Texture synthesis is done in scan line order. Source patches 
are distributed at different locations in the workbench, those are selected based on key and remaining positions are 
filled with candidate patches that are selected based on data to be hidden. For exact data retrieval, uniqueness of 
candidate patches must be checked.  
At receiver, the source patches are extracted with the help of index table to rebuild the source texture. In the data 
extraction process, the matched patch with every location of stego synthetic texture is identified among all candidate 
patches by comparing the kernel regions. Matched patches are identified based on the energy value of the kernel 
region. The data extraction is performed at a faster rate as per the results mentioned in Table 1. In our method, data 
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extraction time is almost the same irrespective of the source texture used and is very less if compared with the Kuo-
Chen Wu et al method.  
Data embeddable texture synthesis is performed for colored textures also. Matched patch of current working location 
in synthesized texture is recognized based on energy value of the kernel region in the data extraction process. 
Sample textures and resultant stego synthetic textures are shown in Figure 4. 

 
Table 1: Data Extraction Time by Kuo-Chen Wu et al.[3] Method and Proposed Method 

   Texture Parameters 
Kuo-Chen Wu et al.[3] Proposed Method 

Without mincut With  mincut Without mincut With  mincut 

 
D20.gif 

Data Extraction time (sec) 4668.68 4166.51 117.35 120.46 

SSIM value 0.0237 0.0242 0.0237 0.0242 

Data Extraction time Reduction Factor 
 

Without mincut 
4668.68

117.35
= 39.78 

With  mincut 
 

4166.51

120.46
= 34.59 

     
D101.gif 

Data Extraction time (sec) 5545.14 5075.66 123.57 120.7 

SSIM value 0.0456 0.0482 0.0456 0.0482 

Data Extraction time Reduction Factor 
 

Without mincut 
5545.14

123.57
= 44.87 

With  mincut 
 

5075.66

120.7
= 42.05 

 

(a)Sample        
Textures 

 
ropenet.jpeg 

 

 
Almond.jpeg 

 
Peanut.jpeg 

(b) Stego  
Synthetic 
Texture 
Images 

Figure 4: (a) Sample Textures   (b) Stego Synthetic Texture Images for Color Textures 
In data embeddable texture synthesis of coloured textures the parameters like data extraction time and SSIM value of 
stego synthetic texture with original texture image are noted in Table 2.    
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Table 2: Data Embeddable Texture Synthesis for Color Texture 

Texture 

ropenet.jpeg 
 
 

Ganache.png 
 
 

Almond.jpeg 

 

Peanut.jpeg 

 

Data Extraction time 
(sec) 

113.69 132.329 116.212 113.577 

SSIM value 0.1154 0.6529 0.6166 0.4086 
 
The data extraction by our proposed method is very fast as compared to the counterpart method by Kuo-Chen Wu et 
al.[3] . For ropenet stego synthetic texture of size 192×192 with 8 Bits per patch hiding capacity, computing time is 
1680 seconds even though the system with higher configurations (i7-2600 3.4GHz CPU and 4GB memory) is used 
whereas in our proposed method, for ropenet stego synthetic texture of size 488×488, with one character per patch 
hiding capacity, data is accurately extracted in 113.69 seconds. 
 
Conclusion and Future work 
This work proposes the fast data embeddable texture synthesis. From a sample of texture image, large sized texture 
image is synthesized by patch based texture synthesis. The patch selected for synthesis is dependent on data to be 
hidden. The pieces of source texture are key based randomly distributed in stego synthetic texture so that it can be 
retrieved accurately at receiver terminal for further round of secure data transmission.   
Different Brodatz textures are considered for experimentation. In the data extraction process, if patch identification is 
done with the help of energy values of patch instead of observing similarity, the process is faster by approximately 40 
times. Same algorithm is experimented on colored textures also. Fast retrieval of embedded data is observed. 
In texture synthesis, if fixed patch size is used, the quality of stego synthetic texture image is not good enough. To 
improve the output stego synthetic texture quality, patch size is decided from pattern size of sample texture instead of 
using fix sized patch. 
In data embeddable texture synthesis, as the patches are placed as per data to be hidden, the structure of stego synthetic 
image is disturbed as this work is in spatial domain.  
Further improvement in quality of output stego synthetic texture is possible if worked in frequency domain. 
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