

Experimental Investigation of Spiral UWB Antenna using

IE3D Tool

Nguyen Thi Dieu Linh

Hanoi University of Industry, Vietnam

nguyen.linh@haui.edu.vn

Received: 9th February 2021, Accepted: 11th March 2021, Published: 30th April 2021

Abstract

The demand for antennas has led to the creation of a large number of antennas. It was Heinrich Hertz's development of the dipole antenna that laid the foundation for today's communication technologies. Broadband antennas that are small in size yet offer more coverage and are very profitable are now required. The lumped circuit is automatically extracted from IE3Dsimulation and optimised for IE3D in this study. With its functions, IE3D is extremely beneficial to RFIC developers.

Key words: IE3D simulation, RFIC, dipole antenna, Broadband antennas

Introduction

When compared to conventional methods, there are numerous advantages to using UWB technology. For example, there is no radio frequency. Instead, timed bursts of electromagnetic radiation are emitted by UWB. This means that the transmitter and receiver components needed for mobile devices can be easily manufactured. There are several components to the Unified Wireless Broadcasting (UWB) technology stack. There are a slew of options for mobile applications. An antenna with sufficient wireless bandwidth and satellite communication is described in this article.

Interference from and from other narrow-band methods can be eliminated using UWB. The UWB signal can be layered on top of the present frequency in various narrowband schemes, allowing for efficient utilisation of the frequency. In spite of its primary focus on terrestrial short-distance communication, the UWB has the potential to be sent from space via a satellite (referred to as "Satellite UWB") to the ground. The introduction of a new channel in satellite communications does not need the allocation of new frequencies in present satellite services that overlap with the UWB signal on an existing frequency band. This technique is used by some UWB devices that feature simple transmitter and receiver setups.

For the terrestrial UWB system, mass production would result in low-cost appliances. The UWB satellite terminal can be less expensive because the same system can be used to communicate via satellite with UWB terrestrial equipment. The UWB signal can be layered on top of the current narrowband spectrum. This will improve satellite technology's spectrum efficiency.

Need and Significance of the work

In the short list of antenna types that are UWB simultaneous, circularly polarised, and machine-manufacturable in a microstrip context, spirals are especially valuable because of their frequency-independent (FI) features.

Devices with amplitude and comparison methods can be found using spiral antennas. In order for a manoeuvring aircraft to be ready to respond to any particular danger signal orientation, circular polarisation is an important feature for directions. Rather than using any polarisation, hazard signals are typically linearly polarised radiators.

Numerous applications, from military surveillance to ECM and ECCM to numerous commercial and private sector applications such as a variety of LPD antennas on transport vehicles are possible with spiral antennas due to their ability to maintain coherent gain and input impedance over wide bandwidths. An ideal bandwidth of 100:1 is required for high-gain antennas that can be mounted on vehicles on land, air, or sea, with frequencies ranging from 0.5 to 18 GHz. Army and economic interests in particular have a substantial presence.

Research Methodology

Simulation Process and Results For Circular Spiral Antenna: After declaring the ports again go to port option and click exit port option and then save the geometry. For finding out the different antenna parameters we have to follow the following the steps:

STEP 1:

Choose Process->Command Simulation. This dialog opens the Simulation Configuration dialog (Figure 1). Our structure would be simulated at 4 frequency points from 0.5 to 18 GHz. In the Frequency Parameters dialog, select the Enter key. The frequency spectrum is prompted by MGRID. Enter Free start= 0.5, Free end= 18, Free number= 4. To attach frequency settings to the list box, select OK. To show the s-parameters usually, we don't need to use MODUA. We will use the embedded MGRID display. Choose the key Defining Graphs (Figure 1). The "S-Parameters and Frequency..." dialog is established. Choose the key Add Graph. The graph type is requested. S-Parameters select. Select. You are encouraged to select the graph for display. Choose dB[S (1, 1)]. Select OK. Go back to the Simulation Configuration dialog. Next to the "Defining Graphs" key you will see "Graphs are described." Our intention is to safely visualize the s-parameter using the graphs in advance. To go ahead, select OK. MGRID invokes IE3D to carry out the background simulation. It requires seconds to complete. IE3D creates graphs for the s-parameter dB plot after simulation.

🙀 HyperLynx 3D EM Design System - Untitled - (Polygon Editor)	
🖀 File Edit Parameters Input AdvEdit Entity Port Optim View Process Window Help	_ 8 ×
ML Q Q Q D + + + N V Mething Parameters Mething Q Cells Automatic Edge Cells AEC Dirabled Mething Algorinext Mething Algorinext Mething algorinest anabled with parameters: Algoing polygons and delectrics calls Cell-Workendgrin 20 Mething Algorinext Mething algorinest anabled with parameters: Algoing polygons and delectrics calls Low Fing Setting NI-3 at 0.0038 GHz FASTA larko 0.108571. Ferrend Fills 0.20056, Reputa Size - 0.0025779, Refined Size - 0. Scheme: Classical Nio FASTA Edit PASTA Parameters Min. Cells: 0.10957 Matic Solver Matic Solver Matic Solver Matic Solver Matic Solver	OK x: 7 5e 002 Cencel y: 0 5 Retrieve z: 0 Key Open de: 0 289930766 Saved Undo 10 - efficience 0,2 dB de: 0 59063024437 db: 0 29053024437
Arter Solution Post Processing [But in Digky Image: Springer. Image: Springer. Image: Sprinter. Image: Springer.	Image: State State Image: State State Image: State State Image: State Image: State State Image: State
Gerometry He is closed Genometry He is	Elevated Layer Inset a Layer
For Ltelp, press F1 mm 105.042% R2_COPYPEN No Plane Wave Defined	2D Geometry Adjustment
	🔺 🌇 🖏 🚯 3:16 PM

Fig 1: Simulation setup

STEP 2:

Click on "current distribution file" option and "radiation pattern file" option available in the window, a new window is displayed, just enter the elevation angle values as well as azimuth angle values for the purpose of radiation pattern display and then click OK to continue the process and previous window is displayed ,click OK.

STEP 3:

Go to "window" option available at the top in the "polygon editor window". Just click on that, different options are available as shown in fig 2 .We have to select our required parameters.

HyperLynx 3D EM Design System - Untitledrect - [Polygon Editor]				
👹 File Edit Parameters Input Adv Edit Entity Port Optim View Proces	s Window Help			_ <i>2</i> ×
	Polygon Editor Switch to Last 3D Geometry Display 2D Meshing Display	Shift+2 Shift+3	(배))) 2 기학 수 이 () 고 스 주	
	3D Geometry Display 3D Meshing Display 3D Current Distribution Display 3D Current Distribution Display			nc -6.55 y: 11.375 zc 1.2 dec -6.55 dy: 11.375
	2D Near Field Plots		Define 2D Field Plots	dz: 1.2 dBho: 13.12604758
6	20 Relation Pattern Diegley- 20 Relation Pattern Propertur- Relation Pattern Propertur- Banken Vir Vergenery Diegley- Genery Vir Vergenery Diegley- Effective Gans, Frequency Diegley- Conjugate Math Sans s- Property Diegley- Anal Salov V-Regenery Diegley- Efficiency V-Arequery Diegley- Ecologie Relation Sciences (Sciences) Relations (Sciences)			initial 10 Start Trip initial Start Trip
Sequentity index jews are closed whereasys descently Matsile Typess Substantis Firsts Datasets Task List	Customize Toolbar Status Bar Information Bar Cascade Tile Arrange Icons		ane Wave Defined	2D Geometry Adjustment
	✓ 1 Polygon Editor			- 🎦 👘 5.16 PM

Fig 2: Polygon editor window

STEP 4:

From the available options click on "3D current distribution "to know current flow of an antenna, which is shown in the fig 3.

Fig 3: Current distribution window

STEP 5:

From the available options click on" 3D radiation pattern" parameter.3D radiation pattern of circular spiral antenna is displayed and as shown in the fig 4.

STEP 6:

Fig 4: 3D radiation pattern window

From the available options click on 2D radiation pattern.2D radiation pattern window is displayed as shown in fig5.In that window select the required elevation and azimuth angle values .After selecting required values click ok to continue. Then 2D radiation pattern graph is displayed as shown in fig 6 .In that graph PG represents the power gain of an antenna, AG represents the antenna gain. Expressions for this PG, AG is given as

PG= (Directivity)*(antenna efficiency)

AG=K*(Directivity) (K =reference value)

-30.1000	Onoiedectinga	30		1.0					
-99.7068	Untitledirect.mpa	40							
-100.707	Untitledirect.mpa	50						1	
101 707	Untitledrect.mpa	60							
101.707	Untitledrect.mpa	70							
-102.707	Untitledrect.mpa	80							
-103.707	Untitledrect.mpa	90							
-104.707	Untitlediect.mpa	100							
*	Untitledrect.mpa	110							
Item ID: None	Untitledrect.mpa	120							
x; 0.5 (GHz)	Untitledrect.mpa	130							
gnitude: E-total	Untitlediect.mpa	140							
lor: dbi(Gan)	Untitledrect.mpa	150							
1 1 0.000 1 0.000 2 1 0.000 1 0.000 Sum Angles : (-171.852, 24.082	Additional Data Set	Total Add	ational ite	ms: U			_	Option Gase Style (call call of a state style (call call of a style (call call call of a style (call call call call call call call cal	
S-parameters related views are closed. All other results related views are closed. S-parameters related views are closed.								C HUS C Normalized RCS	
All other results related views are closed. Geometry life is saved Simulation setup is done successfully! S parameters related views are closed.								C Azimuth C Azimuth C Elevation Pattern List OK Cancel	
Message Geometry Metallic Types Subst		-	-	-	-	-	mm	5 02191% R2_CORVEEN INg Plane Wave Defined	2D Geometry Adjustry
	* 24							presente presente transformed	20 decimenty Adjustmi

Fig 5: 2D pattern display window

HyperLynx 3D EM Design System - Untitle	edrect - [Elevation Pattern Gain Display]	in a state of the
Ar File Parameters Process Options	Window Help	- 8 ×
	9 🖊 馬 씨 씨 씨 씨 씨 씨 사 🏟 (聖 国 国 国) " 씨 🕅 시 기 씨 🔍 스 너 위 뉴 綱 12	
5	> > # 문 너 꽤 [™] 및 좌 디 E M [™] # # # # # # # # # # # # # # # # # # #	
ALPID O THE A NUM		
Beference Mode		12
(* XAsis PLL	Elevation Pattern Gain Display	ń
C Y Axis		
No Reference	→ 1 f=0.5(GHz), E-theta, phi=0 (deg), PG=-94.3626	
Line N/A	→ [-0.5(GH2), E-biti, pin-0 (deg), FO-102.36 dB, AG-97.305 dB	
×y		
X: N/A bep	-84 -84	
Y: N/A	.87	
Selected Values	3 2	
= X Y	-90	
1 -12.7273 -94.3788	-93	1
2 0.00007 101.4021	.05	
Oa /	-99	
	-102 -102	
	105	
	-108 -108	
	-111	
1		
Difference Between Two Points		
	-160 -155 -90 -45 0 45 90 155 160	
		•
S-parameters related views are closed.		
S-parameters related views are closed.		
All other results related views are closed.		
Simulation setup is done successfully!		-
S-parameters related views are closed.		•
Message Geometry Metallic Types Subst	rates Finite Dielectrics Task List	
For Help, press F1	mm 5.02191% R2 COPYPEN No Plane Wave Defined	2D Geometry Adjustment
C > 0 2	a 🚜	🔺 🌠 👘 🛛 5:18 PM

Fig 6: Elevation pattern Vs. Gain Display

STEP7:

Go to step 3 and click on "Directivity vs. Frequency" display option and then "a new window "is displayed for selecting the required elevation angle and azimuth angle values .After that click on OK .Directivity vs. Frequency graph window is displayed as shown in fig 7.

Fig 7: Directivity vs. Frequency display window

STEP 8:

Go to step 3 and click on Gain vs. Frequency display option and then a new window is displayed for selecting the required elevation angle and azimuth angle values .After that click on Ok .Gain vs. Frequency graph window is displayed as shown in fig 8

👯 HyperLynx 3D EM Design Sys	stem - 2 - [Total Field Gain vs. Frequency : 2]		
/Vr File Parameters Process	Options Window Help		_ 8 >
D 🛩 🖬 😂 🤋 🕺 🚍	🗨 "] ESC 📝 🖷 💐 🗮 🖤 🕉 🖻 🖻 🗙 🖅 🖏 🦡 🐂	[[편]] 씨 [[] / 지 [] 및 김 이 및 南 湖 [문	
うく 🔳 🛂 🗏 🗃 🗃	へ 今日 3 代 15 日 15 11 現 15 日 15 6 7 単 タ () 👫 👫 III " 🛞 🗁 🌈 🜲 🖬 😝 🖬 🐸	
HL Q Q Q D + →	🗼 " Vs +V I I I 🗐 📰 📮 🗿 🚝 🚰 " 🛰 🛨 🍸 🛋	• • • • • • • • • • • • • • • • • • •	
Reference Mode C XAsis C XAsis C No Reference Current Value	Total Field Gain vs. Frequency Color		
X N/A X N/A Y N/A Selected Values X Y 1 1 78776 - 280564 2 0.734594 - 492,2003 3 8.061522 111.0029			
< >	-55 2	56	
Difference Between Two Points		50 35	
d≤ 0	Frequency (GHz)		
Geometry file is closed. Geometry file 'C:\Users\MPLAB' A vetex is entered at [28.9,7.42 Geometry file is saved Simulation setup is done success Spasmeters related views are c A vetex is entered at (27.325,11)	TBUDesktoplace bivectargular(2 geo" kaded 55, 1] (ma) aduly Josefi 1, 55, 1] (em)		Ê. V
Message Geometry Metallic	Types Substrates Finite Dielectrics Task List		
For Help, press F1		mm 4.80769% R2_COPYPEN No Plane Wave Defined	2D Geometry Adjustment
(2) 6 10 0	D 🙍 👹 🗃		🔺 🍞 🞲 40 2:57 PM

Fig 8: Gain vs Frequency display window

Results and Discussion

To get an idea of performance of each antenna, we can look at the data in the following table 1. The rectangular spiral antenna has a higher gain value than the circular spiral antenna, based on the comparison of their gain values. This is because bandwidth has a negative relationship with gain. The high bandwidth is due to the low gain value.

Parameters	Circular spiral antenna	Rectangular spiral antenna
Frequency range	(0.5 – 18)GHZ	(0.5 – 18)GHZ
Structure		

Table 1: Comparision between rectangular and circular spiral antenna

Conclusion

An excellent IE3D tool has been used to model and analyse spiral antenna design. The dielectric constant and substrate materials can also be varied to test this concept. Spiral antennas can be made physically with the help of a PCB circuit board thanks to this programme. This software allows for the creation of spiral antennas for a variety of frequencies. Based on the gain values of the antennas, we can see that the rectangular spiral antenna performs better than the circular spiral antenna.

Amplification's gain decreases linearly as bandwidth increases. Simulated data shows that spiral antennas are a common choice for satellite communication systems because of their small size, large bandwidth and good gain, even though rectangular spiral antennas are superior. This contained the recommended antenna's UWB standard BW. In addition, the antenna's emission pattern remained omnidirectional for the vast majority of the body. Because of the antenna's advantages, such as its adaptability, it worked for UWB applications.

References

- 1. A.W.Rudge, K.Milne, A.D.Olver, P.Knight,"The Handbook of Antenna Design" volumes1&2, 1892
- Commission of the European Communities, BCommission decision on allowing the use of the radio spectrum for equipment using ultra-wideband technology in a harmonised manner in the Community, [Official J. Eur. Union, Feb. 21, 2007
- 3. D.-H. Kwon, BEffect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas, [IEEE Trans. Antennas Propag., vol. 54, pp. 2208–2215, Aug. 2006
- 4. D. Kim, J. Kim, J. Kim, W.-S. Park, and W. Hwang, "Design of a Multilayer Composite-Antenna-Structure by Spiral Type ",PIERS Proceedings, Marrakesh, MOROCCO, March 20–23, 2011
- 5. D.M. Pozar, Microwave Engineering, 2nd Ed., New York: John Wiley & Sons, 1998
- 6. E. Farr and C. Baum, Time domain characterization of antennas with TEM feeds, Sensor and Simulation note 426, Oct. 1998
- 7. Edward C. Jordan., Keith G. Balmain," Electromagnetic waves and radiating systems, 'New Delhi: Prentice-Hall of India [private Limited, 1983]
- 8. FCC, Revision of Part 15 of the commission's rules regarding ultra wideband transmission systems, ET Docket 98-153, FCC 02-48, Feb. 14, 2002
- 9. H. G. Schantz, BA brief history of UWB antennas, [IEEE Aerosp. Electron. Syst. Mag., vol. 19, pp. 22–26, Apr. 2004
- 10. "IE3D User's Manual, Release 6," Zeland Software, Inc., Fremont, CA, 1999
- J.D. Dyson, "The Equiangular Spiral Antenna," IRE Transactions on Antennas and Propagation, 1959: 181–187
- J. Thaysen, et al, "A Wideband Balun How Does it Work?," Applied Microwave and Wireless, Vol. 12, No. 10, October 2000: 40–50. 14. R.G. Corzine, and J.A. Mosko, Four-Arm Spiral Antennas, Artech House, 1990
- J. Thaysen, et al, "Characterization and Optimization of a Coplanar Waveguide Fed Logarithmic Spiral Antenna," IEEE AP-S Conference on Antennas and Propagation for Wireless Communication, Waltham, MA, 2000: 25–28
- 14. J. Thaysen, et al, "Numerical and Experimental Investigation of a Coplanar Waveguide-Fed Spiral Antenna," IEEE 24th QMW Antenna Symposium, 2000: 13–16
- 15. J. Thaysen, et al, "The Radiation Pattern of a Logarithmic Spiral Antenna," Accepted for presentation at the 2001 URSI International Symposium on Electromagnetic Theory, Victoria, British Columbia, Canada, (May 2001): 4

- J. Thaysen, et al, "Ultra Wideband Coplanar Waveguide-Fed Spiral Antenna for Humanitarian Demining," 30th European Microwave Conference, CNIT, La Defense, Paris, (October 2–5, 2000): 371–375
- J. Thaysen, "Broadband Antennas," Department of Applied Electronics, Technical University of Denmark, July 1999.
 J.D. Dyson, "The Unidirectional Equiangular Spiral Antenna," IRE Transactions on Antennas and Propagation, 1959: 329–334
- J. Thaysen, "Logarithmic Spiral Antenna and Feed Network for Application to Humanitarian Demining," Department of Applied Electronics and Department of Electromagnetic Systems, Technical University of Denmark, Master Thesis in Danish, March 2000
- 19. John & Jasik,"Antenna Engineering Handbook", 3rd Edition, MC Graw Hill, 1993
- K. Tilley, et al, "Coplanar Waveguide Fed Coplanar Strip Dipole Antenna," Electronics Letters, Vol. 30, 1994: 176–177
- M-Y. Li, et al, "Broadband Coplanar Waveguide-Coplanar Strip-fed Spiral Antenna," Electronics Letters, Vol. 31, 1995: 4–5
- 22. MUSHIAKE, Y. Self-complementary antennas. IEEE Trans. Antennas Propagat. December 1992, vol. 34, p. 23 29
- 23. Nannapaneni Narayana Rao,"Elements of Engineering Electromagnetics", 6th Edition, 1977 Pearson Education, Inc
- 24. P.E. Mayes, "Frequency-independent Antennas and Broadband Derivatives Thereof," Proceedings of the IEEE, Vol. 80, 1982: 103–112
- 25. R. P. Meys, BA summary of the transmitting and receiving properties of antennas, [IEEE Antennas Propag. Mag., vol. 42, pp. 49–53, Jun. 2000
- 26. V.H.Rumsey,"Frequency Independent antennas", IRE Nat Conv.Rec., Part-I, pp.114-118, July 1957
- 27. www.mentor graphics IE3D .com