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Abstract 

In this paper, a mathematical model of cutting tool flank wear for the metal cutting process is used to evaluate a 

control approach for a nonlinear system. The dynamic cutting force and machining parameters work together to 

produce the flank wear model. When the flank wear model is calibrated to actual conditions, the nonlinear 

dynamic model is created. Many working conditions, such as softening and brittle fracture, cause tool failure 

during cutting and shorten the tool's lifespan. PID, PID based MPC, KALMAN and Extended KALMAN, 

Artificial Neural Networks, and Fuzzy Logic Controllers have been used in the paper work to manage the flank 

wear during the cutting process. The controller will be forced to limit the amount of tool ware, extending the life 

of the cutting tool. 

 Keywords: Nonlinear dynamic model, Flank wear, MPC, KALMAN Filter, Fuzzy Logic Controller, Artificial 

Neural Networks 

 

Introduction 

For example, a cutting tool may fail due to softening or brittle fracture, mechanical stresses or wear on the working 

component. Brittle fractures cause the cutting tool to be under a lot of pressure and severe loads. These failures cause 

the cutting operation to quickly freeze, and the tool to cut under chatter circumstances. The following failures can be 

avoided by carefully selecting cutting parameters such as feed, wedge angle, depth of cut, and so on. 

Two distinct parts of the cutting tool are subjected to wear during the cutting process. Known as flankwear, it is the 

wear that occurs below the cutting edge of a tool, and it extends parallel to that edge. Carter wear, on the other hand, is 

wear that arises on the tool's face and forms a cavity away from the cutting edge. Due to its wear, a cutting tool has a 

limited lifespan. A direct correlation exists between productivity and cutting-tool wear. 

Mechanical abrasion and thermal erosion are the two primary causes of tool wear. Despite the fact that both processes 

are taking place at the same time, the way they behave will vary depending on the cutting conditions. Mechanical wear 

is more prominent when low cutting speeds are used or when the work piece has a high machinability. Thermal wear 

occurs when high cutting rates are utilized on work components that are difficult to machine. The quick relative motion 

of produced chips on the surface causes friction. The cutting tool's phase is now subjected to friction at or over the 

recommended level. The result of scrubbing the work item is also received. As a result, this friction also affects the 

vehicle's flanks. 

 

Methodology  

The goal of this project is to create a model that can predict the wear on the flanks and then assess the findings. Models 

based on observations like cutting powers and parameters are first assumed. The next step is to conduct experiments, 

which follows feed, cutting pressures, cutting speed, and depth of cut all factor into the calculation of flank wear. 
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The proposed dynamic model's constants will be evaluated. There will be a simulation and control of flank wear, as 

well as a study of controllers' approaches. 

An actuating signal (m) is generated by comparing the measured output to the set point. This allows the desired value to 

be obtained. The controller receives an error signal, which is just the difference between the set point and the measured 

output. There are various types of controllers based on the relationship between the error signal and the output value. 

(PID), (PI) and Proportional controllers are the three most common types of controllers. 

 

Fig 1: Flow Diagram 

 

Results and Discussion 

PID Controller: PID is derivation for proportional integral and derivative. Proportional is to multiply by a constant, 

if the proportionality gain is high it repeatedly produces the oscillations means overshoots the set point. Integral 

provides the addition of error over a certain interval of time. The error can become large if the error adds up. Sometimes 

the error may become small if the positive error is added to negative error. As the integral time decreases the integral 

functionality becomes more precise. The rate of change during certain interval is defined by derivative. The effect of the 

derivative is to alter the overshoot caused by the P and I. 

All three of these are together combined to produce output, which is from measured errors from the system. With the 

combination of these three P, I and D factors any changes or disturbances are quickly eliminated.  

 
Fig 2: Conventional PID Control System 
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Simulation Results using PID Controller 

 

Fig 3a: PID response for 0.06 input 

 

 

Fig 3b: PID response for 0.1 input 

 

MPC Controller for Non-Linear Systems: Model predictive control is based on the prediction methodology, 

in which the future values of output are projected using the Model and current data. Multivariable control problems 

benefit greatly from this strategy. Calculating input variable changes is made easier with the use of predictions and 

measurements. The output variables are the control variables in MPC applications. Input variables are being adjusted at 

the same time. The PID controller lacks the ability to forecast future values, but the MPC can do so and apply the 

appropriate control measures. Two parameters are used in MPC prediction- Horizons of prediction and control. 

Predictive horizon is the time period in which the controller must analyze future control intervals. Control intervals will 

be optimal for the modified variables. It is the total number of variables that will be modified during the control 

interval. 
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Simulation Results using MPC Controller 

 

Fig 4a: MPC response for 0.06 input 

 

Fig 4b: MPC response for 0.1 input 

Kalman Filter for Non-Linear Systems: A straight Gaussian state space demonstration, known as the Kalman 

filter, is logically tractable. In honour of Kalman (1960), who proposed the use of the recursive connection to detect a 

flag of a known frame in the presence of irregular commotion inside the control hypothesis, it was given that name. It is 

an ideal estimator because it draws excitement parameters from off-the-charts and questionable impressions. A 

recursive approach is used to handle new estimators as they arrive. If the noise is Gaussian, the Kalman filter reduces 

the error in the evaluated parameters. That's why it's called the "optimal filtering method" (OFM). In addition, it extends 

the estimation to include the state's appraiser, making it more accurate. Indicator Corrector Sort Estimator is a collection 

of scientific conditions that provide an indicator corrector sort estimator that is optimal within its limitations. Kalman 

filters have received much investigation and application because to the clarity with which they are presented. This is 

especially true in the area of self-sufficient or assisted routes. 
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Fig 5: Kalman filter 

Simulation Results using Kalman Filter  

 

Fig 6a: Kalman response for 0.06 input 

 

Fig 6b: Kalman response for 0.1 input 

 Simulation Results using Extended Kalman Filter 

 

Fig 7a: Extended Kalman response for 0.06 input 
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Fig 7b:  Extended Kalman response for 0.1 input 

Fuzzy Control: In order to achieve the desired performance, conventional controllers require a thorough 

understanding of the system and precise tuning. No precise scientific model of the system or sophisticated calculations 

is necessary for a Fuzzy logic controller. In a fuzzy logic controller, the control activity is addressed through the 

assessment of a set of fundamental semantic norms. However, a scientific model of the system isn't necessary for 

moving forward with the principles because all that's needed is an in-depth knowledge of the process to be regulated. 

The fuzzy logic control system for the non-linear flank wear model is depicted in Fig.8, as shown. 

The fuzzier, data base, rule base, decision-making, and defuzzifier are the five modules that make up the fuzzy logic 

controller. The inputs to the fuzzy controller are the error in output of surface roughness (e) and the change of 

error (ce) Several steps in the design of FLC for the non-linear flank wear model are outlined below: 

 
Fig 8: Functional Block diagram of Fuzzy Logic Controller System 

 

Table 1: List of the parameters for design of the Fuzzy Logic Controller 

Input parameters Cutting Speed(m/min) 

Number of Variables 07 

Membership Function Mamdani type of Triangular 

Quantization levels Error (e) and Change in error(ce) 

Labels of Quantization levels NB,NM,NS,ZE,PS,PM,PB 

Defuzzification method Centroid method 

Decision making method If then Else method 

Number of Rules 49 

Output of the plant Cutting Force 
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 Fuzzy controller Results  

The obtained simulation responses of flank wear for different set points under Fuzzy Logic basis function of PID 

controller are shown in Fig 10(a)-(d). 

 

Fig 10a: Response of FLC {SP =0.06} 

The Fig 10a shows the evaluation values settling time=100sec. and % of over shoot is nil, for the Fuzzy Logic basis 

function of PID controller of closed loop control system response based on input reference (Set point) is 0.06. 

 

Fig 10b: Output of FLC  

The Fig 10b shows that the cutting speed input varies from 180-220 (m/min), which is used as the input of the flank 

wear model of the plant in the closed loop controller system. 

 
Fig 10c: Response of FLC {SP=0.1} 

The Fig 10c shows the evaluation values settling time=170sec. and % of over shoot is nil, for the Fuzzy Logic basis 

function of PID controller of closed loop control system response based on input reference (Setpiont) is 0.1. 
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Fig 10d: Output of FLC  

The Fig 10d shows the output of the cutting speed various between 180-220 (m/min), which is used to input of the flank 

wear model of the plant in the closed loop controller system. 

ANN Based On Self-Tuning of PID Controller: The simulation results of flank wear for various set points 

under neural network based on self-tuning of PID controllers are shown in Figures 11a to 11d. 
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Fig 11a: Response of NeuroPID Control (SP =0.06) 

The Fig 11a shows the evaluation values settling time=25sec. and % of over shoot =33%, for the tuning of PID 

controller using neural networks of closed loop control system response based on input reference(Set point) is 0.06. 
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Fig 11b: Output of Neuro PID controller 
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The Fig 11b shows the input of the cutting speed various from 180-220 (m/min), which is used to input of 

the flank wear model of the plant in the closed loop controller system. 
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Fig 11c: Response of NeuroPID Control {SP=0.1} 

The Fig 11c shows the evaluation values settling time=15sec. and % of over shoot =40%, for the tuning of PID 

controller using neural networks of closed loop control system response based on input reference (Set point) is 0.1. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

TIME (Sec.)

F
LA

N
K

 W
E

A
R

(m
/s

ec
)

  

Fig 11d: Output of Neuro PID controllers 

The Fig 11d shows the input of the cutting speed various between 180-220 (m/min), which is used to input of 

the flank wear model of the plant in the closed loop controller system. 

Conclusion 

The collected findings were evaluated, and it was discovered that the MPC performed significantly better than the PID, 

KALMAN, and Extended KALMAN filters in terms of characteristics such as settling time and % overshoot. 

Furthermore, when compared to the PID, KALMAN, and Extended KALMAN filters, the MPC controller produced 

fewer errors than the other three. As a result, it has been determined that MPC is the most appropriate strategy for this 

plant model. 
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