

Comparison of Foot-Over Bridge with Different Configuration of Members

^{*1}Dr. Prashant D. Hiwase, ²S Venkat Shubham, ³Ashlesh S Reddy, ⁴Arshad A Ali

1,2,3,4Dept. of Civil Engineering, Shri Ramdeobaba College of Engineering and Management Nagpur (M.S.), India

Email: prashant.hiwase@gmail.com, vshubham09@gmail.com, ashleshreddy173@gmail.com, arshadalis12s@gmail.com

Received: 06th November 2019, Accepted: 10th February 2020, Published: 29th February 2020

Abstract

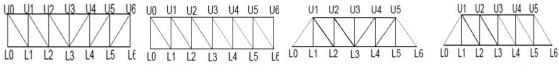
Foot over bridge is an important civil engineering structure designed for the free movement of pedestrians in heavy vehicle traffic regions across roads, railway line etc.

There is a critical comparison between foot over bridges having different configurations based on Strength, Safety, Economy and Sustainability using the concept of Influence Line Diagram (ILD). The comparison between compression and tension members having equal forces has been highlighted by designing and cost comparing of both.

Keywords

IS 800-2007, Influence Line Diagram (ILD), Configuration of Trusses, Tension & Compression

Introduction


Foot-over bridge is a walkway bridge designed for the free movement of pedestrian across railway line canals and marshy land etc. Foot over bridge are also located across roads for free movements of pedestrians in high Vehicular traffic region. [8]

Methodology

Foot-over Bridge is a civil engineering structure, consisting of different structural members in which truss members carries the major stresses. [6] For analysing the structure we have selected four different configurations of trusses. A standard load (constant Live Load & Dead Load) is applied on all the foot-over bridges by keeping all the parameters constant (span, walk-way, height of truss etc) for determining the stresses in the members and hence selecting the most suitable configuration based on safety and sustainability. [3,7]

Problem Statement

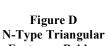

Comparison of different configurations of foot-over bridge as shown in fig A, B, C & D, by analysing & designing Bottom Chord, Top Chord, Vertical & Inclined members using IS 800-2007. The different configurations of truss members are as shown in the figure A, B, C, D

Figure A	
Mirrored N-Type Foot-	
over Bridge	

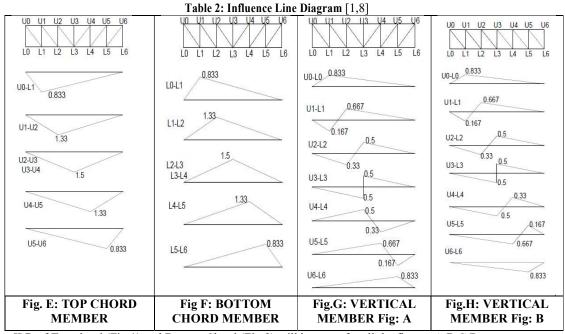
Figure **B N-Type Foot-over** Bridge

Figure C **Mirrored N-Type Triangular Foot-over** Bridge

Foot-over Bridge

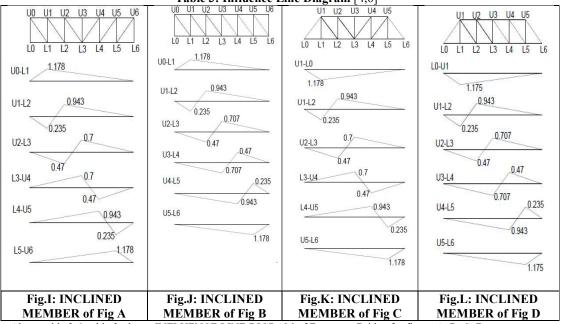
Standardised Data [2,5]

Span length = 2m, No of Panels = 6, Walkway = 2.4m, Height of Truss = 2m


Cross girder: Bearing= 0.1m, Effective length=2.5m, Self-weight= 0.1KN/m, Thickness of flooring = 0.1m, TRUSS: Self weight= 0.1KN/m, Live load intensity=4KN/m²,

fu=410N/mm^2, fy=250N/mm^2, bolt diameter= 18mm, pitch=2.5d=50mm, edge distance=1.5d0=30mm, gm0=1.1, gmb=1.25: As per IS 800-2007 and Indian steel table

Table 1: Loading Calculation						
DEAD LOAD		LIVE LOAD				
Flooring	3KN/m	Live load= live load intens	ity X walkway			
Cross girder	0.0625KN/m	=4 x 2.4/2				
Self-weight of truss	0.1KN/m	= 4.8 KN/m				
Total load	3.1625KN/m					
Factored Load	4.75KN/m	Factored load	7.2KN/m			


Table 1: Loading Calculation

Above Table 1 showing Dead load and Live load calculation of foot-over bridge.

ILD of Top chord (Fig:1) and Bottom Chord (Fig:2) will be same for all the figures A,B,C,D

 Table 3: Influence Line Diagram [4,6]

Above table 2 & table 3, shows INFLUENCE LINE DIGRAM of Foot-over Bridge for figure A, B, C, D.

Sample Calculations [1,6] Forces in Inclined Member: U1-L2 for figure A, B, C, D Fdead = 4.75 X (-0.5 X 2.4 X 0.235 + 0.5 X 9.6 X 0.943) = 20.16 KN Flive 1 = (-0.5 X 2.4 X 0.235 X 7.2) = -2.0304 KN Flive2 = 0.5 X 9.6 X 0.943 X 7.2 = 32.59 KN Net Forces = Dead Load + Live Load; F1 = 20.106 - 2.304 = **18.07 KN(T)** & F2 = 20.106 + 32.59 = **52.7 KN(T)**

MEMBE FIGURE FIGURE C FIGURE D FIGURE A R В U0 - L059.5(T) _ 59.5(T) -_ _ -U1 – L1 37.3(T) 12.81(T) 37.30(T) 12.8(T) 37.30(T) 12.81(T) 37.3(T) 12.8(T) U2 – L2 0.88(C) 17.7(T) 0.89(C) 17.77(T) 0.88(C) 17.78(T) 0.89(C) 17.7(T) U3 – L3 10.8(C) 10.8(T) 10.8(C) 10.8(T) 10.8(C) 10.8(T) 10.8(C) 10.8(T) U4 - L417.7(T) 0.89(C) 17.78(C) 0.899(T) 17.7(T) 0.89(C) 17.7(C) 0.89(T) 12.81(T) U5 – L5 12.1(T) 12.81(C) 37.3(T) 37.3(C) 12.8(C 37.3(T) 37.30(C) 59.5(T) U6 – L6 59.5(C) ------

Table 4: Vertical Members

Above Table: 4 shows compressive & tensile forces of Vertical Member for figure A, B, C, D

Table 5: Top Chord Member

MEMBER	FIGUR	FIGURE A FIGURE B		FIGUE	RE C	FIGU	RE D	
U0-U1	59.5 (C)		59.5 (C)					
U1-U2	95.36 (C)		95.36 (C)		95.36 (C)		95.36 (C)	
U2-U3	107.55 (C)		107.55 (C)		107.55 (C)		107.55 (C)	
U3-U4	107.55 (C)		107.55 (C)		107.55 (C)		107.55 (C)	
U4-U5	95.36 (C)		95.36 (C)		95.36 (C)		95.36 (C)	
U5-U6	59.5 (C)		59.5 (C)		-		-	

Above Table: 5 shows compressive & tensile forces of Top Chord Member for figure A, B, C, D

	Table 6: Bottom Chord Member							
MEMBER	FIGUR	ΕA	FIGUE	RE B	FIGUE	RE C	FIGUI	RE D
L0-L1	59.5 (T)		59.5 (T)		59.5 (T)		59.5 (T)	
L1-L2	95.36 (T)		95.36 (T)		95.36 (T)		95.36 (T)	
L2-L3	107.55 (T)		107.55 (T)		107.55 (T)		107.55 (T)	
L3-L4	107.55 (T)		107.55 (T)		107.55 (T)		107.55 (T)	
L4-L5	95.36 (T)		95.36 (T)		95.36 (T)		95.36 (T)	
L5-L6	59.5 (T)		59.5 (T)		59.5 (T)		59.5 (T)	

Above Table: 6 shows compressive & tensile forces of Bottom Chord Member for figure A, B, C, D

Table 7: Inclined Members

MEMB- ER	FIC	FIGURE A		FIGURE B		URE C	FIC	JURE D
	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
U0-L1	84.46 T	0	84.46 T	0				
U1-L0					84.46 C		84.46 C	
U1-L2	18.07 T	52.7 T	18.07 T	52.7 T	18.07 T	52.7 T	18.07 T	52.7 T
U2-L3	1.5 C	24.75 T	1.5 C	24.75 T	1.5 C	24.75 T	1.5 C	24.75 T
U4-L3	24.75 T	1.5 C			24.75 T	1.5 C		
U3-L4			24.76 C	1.5 T			24.76 C	1.5 T
U5-L4	52.7 T	18.07 T			52.7 T	18.07 T	-	-
U4-L5			52.7 C	18.07 C			52.7 C	18.07 C
U6-L5	0	84.46 T						
U5-L6			0	84.46 C	0	84.46 C	0	84.46 C

Above Table: 7 shows compressive & tensile forces of Inclined Member for figure A, B, C, D

Design of Truss Members

a) Compression Member

Initially member of size $60 \ge 60 \ge 10$ for Top Chord Member, $70 \ge 70 \ge 8$ for Inclined Member were taken for design, which eventually failed to sustain the loads, in the similar manner we increased the member sizes to check the safety of the member.

The minimum safe sizes for calculated forces in Top Chord Member & Inclined Member are: 65 x 65 x 8 & 75 x 75 x 8 respectively.

Table 8: Compression Member [2,10]						
	TOP CHORD MEMBER	INCLINED MEMBER	REFERENCES			
	U0-L1 of Fig. A	U1-L0 of Fig. C				
ANGLE SIZE	65 x 65 x 8	75 x 75 x 8	Indian Steel Table			
Properties of	Ag=976mm^2, rmin=11.5mm	Ag=1138mm^2,				
Angle		rmin=14.5mm				
Effective Lentgth	0.85 x 2000= 1700mm	0.85 x 2000= 1700mm	Clause.7.2.2, Page			
			:35, IS 800-2007			
Slenderness Ratio $\lambda = \frac{1}{100}$		$\lambda = \text{lmin/rmin} = 117.25$	Clause.7.1.2.1, Page			
			:34, IS 800-2007			
Design	Fcd=69.44N/mm^2	Fcd=90.708N/mm^2	Table:9C, Page :42,			
Compressive			IS 800-2007			
Stress						
Load Carrying	Pu=69.44 x 977=67.84KN >	Pu=90.708 x 1138= 103.2KN				
Capacity	59.5KN	>84.46KN				

Above Table: 8 shows calculations for design of compression member i.e. U0-L1 & U1-L0

B) Tension Member

On construction site the minimum size of angle used is 50x50x6mm, hence considering this section and checking for the maximum tensile load. Here this section is safe in sustaining the maximum tensile force. Therefore, all members with tensile forces lesser than the Maximum tensile force (84.46KN) is designed for minimum size of 50 x50 x6mm

Table 9: Tension Member [2,9,10]				
	TENSION MEMBER	REFERENCES		
Angle size	50 x 50 x 6mm (minimum size)	Indian Steel Table		
Gross Area	568mm^2	Indian Steel Table		
Design Strength due to Yielding of gross section $T_{dg} = A_g f_y / \gamma_{mo}$	129.1KN >84.46KN	Clause.6.2, page:32 IS 800-2007		
$ \begin{split} \text{Design Strength due to Rupture of critical section} \\ T_{dn} &= 0.9 A_{nc} f_{u'} \gamma_{m1} + \beta A_{go} f_{y'} \gamma_{mo} \\ \beta &= 1.4\text{-}0.076 (w/t) (f_{y}/f_u) (b_s/L_c) \leq (f_u \gamma_{mo}/f_y \gamma_{m1}) \\ &\geq (0.7) \end{split} $	Anc=162mm ² , Ago=282mm ² , β=1.114, Tdn=119.22>84.46KN	Clause.6.3.3, page:33 IS 800-2007		
Design Strength due to block shear $T_{db}=(0.9A_{vn}f_u/(\sqrt{3}\gamma_{m1})+A_{tg}f_y/\gamma_{m0})$ or $T_{db}=(A_{vg}f_{y'}(\sqrt{3}\gamma_{m0})+0.9A_{tn}f_u/\gamma_{m1})$	Avn=480mm^2, Atg=180mm^2 Tdb=122.7>84.46KN Avg=780mm^2, Atn=120mm^2 Tdb=137.77KN>84.46KN	Clause.6.4.1, page:33 IS 800-2007		

Above Table: 9 shows calculations for design of Tension member of size 50x50x6mm

Result & Discussion

- a. In configurations of figure A & C there are more tensile stresses than the compressive stresses.
- b. In configurations of figure B & D there are more compressive stresses than the tensile stresses.
- c. Major Tensile & Compressive Stresses in Inclined members are 84.46KN & 84.46KN respectively, for all four configurations.

d. For the same load in tension(84.46KN) and comparison (84.6KN) the size of the member in tension (table 9) is comparatively smaller than that in compression (table 8)

	Table 10: Cost Comparison [2,10]							
1	Inclined member for tension force 84.46 KN (50x50x6mm)	Percentage Reduction in Steel						
	Standard weight =4.5 kg/m $\underline{Weight} = 12.727 \text{ Kg}$	1) for Inclined Member						
_		= <u>(</u> 25.173-12.727)/25.173						
2	Inclined member for compression force 84.46 KN Size of	=0.4934=49.34%						
	member =75x75x8 mm <u>Weight =25.173 Kg</u>							
3	Vertical member for Tension Force 59.72KN (50 x 50x 6)	2) for Fig A and Fig C end spans						
	Standard Weight= 4.5Kg/m Weight=12.727Kg	= (40.5279-25.1730)/40.5279						
		=0.37=37%						
4	Top Chord Member for Compression force 59.51KN (65 x65							
	x100) Standard weight=9.4Kg							
	Weight =18.8Kg							

Table 10:	Cost Com	parison [2,10	1
-----------	----------	-----------	------	---

Above Table: 10 shows results of cost variation of different configuration of foot-over Bridge

Conclusion

- 1. In foot-over bridge tensile force should always be preferred over compressive force.
- 2. For two members carrying same forces of tension and compression respectively, steel required for tension member is nearly 50% that of steel required for compression member.
- 3. As per Configurations of Figure A & Figure B, there are more compressive forces in figure B compared to that of in figure A, hence Figure A is Preferred.
- 4. As per Configurations of Figure C & Figure D, there are more compressive forces in figure D compared to that of in figure C, hence Figure C is Preferred.
- 5. On Comparing, the steel required in Figure C it is nearly 60% of steel required in Figure A for the end spans.
- 6. On comparing all the configurations, Figure C is most economical and sustainable.

References

- 1. Dr. N. Subramanian, ,Code of Practice on Steel Structures -A Review of IS 800: 2007^e, Computer Design Consultants, Gaithersburg, 20878, USA.
- 2. IS 800: 2007 Indian Standard "Code of Practice for General Construction in Steel Code of Practice" (Third Revision).
- Kushalkumar Yadav, Prashant D Hiwase and Ramesh V. Meghrajani "Study the behaviour of cold form c section purlins under bending" International Journal of Civil Engineering and Technology (IJCIET), Volume 9, Issue 5, May 2018, Pages 964–968 Publisher IAEME Publication.
- 4. L.S. Negi "Design of Steel Structures", Tata McGraw-Hill Publishing Company (P) LTD, 2nd edition 2008.
- Limje Mayur, Solanki Dharmendra, Patel Darshan, Patel Neel, Patel Hiren, Chauhan Dixit "Appraisal and Design of Foot Over Bridge", International Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 04 | Apr 2019.
- 6. S. K. Duggal, "Limit State Design of Steel Structures" McGraw-Hill Education (India) Private LTD 2nd edition, 2010.
- S. Rajesh, "Design of A Steel Foot Over Bridge in A Railway Station "International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 8, August 2017, pp. 1533–1548, Article ID: IJCIET_08_08_167.
- 8. S.S Bhavikatti "Design of steel structure by limit state method as per IS 800: 2007", I.K. International Publishing House Pvt. Ltd. 2009.
- 9. Sachithanandam P., Meikandaan T.P., Srividya T., Steel framed multi storey residential building analysis and design, International Journal of Applied Engineering Research, v-9, i-22, pp-5527-5529, 2014.
- 10. Steel Table by S.Ramamrutham, Dhanpat Rai Publishing Company (P) LTD. 2010